
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 131

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 132

The following is intended to outline our general product
direction. It is intended
for information purposes only, and may not be incorporated
into any contract.
It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 133

Type annotations in Java 8
и почему это хорошо
Alexandre (Shura) Iline
Java quality architect

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 134Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 16

Program
Agenda

 Quick emotional introduction

– What's wrong with testing

 Annotations before Java 8

 Type annotations

 Checkers framework

 Custom annotations

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 135

What's wrong with testing?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 136

Here's a developer.

He works hard

Designs the feature

Implements the feature

Submits the fix ...

on a feature

With a bug!

Tests (good developer) ...

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 137

Testing
 Fix ready
 Pre-integration testing
 Build
 More testing
 Promotion
 Yet more testing

– Few layers of testing
 Went to customer
 Real world testing

(less then an hour)

(nightly)

(weekly)

(take weeks)

(how long – no idea)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 138

Back to the developer

Which developer?

That developer could ...

- be working on something else

- leave for a vacation

- get sick

- leave the company

- transfer the responsibility

Has to switch, re-learn the design, etc. etc.

Often just patch.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 139

Could it be done differently?

 More pre-integration testing.

– Yes, please! :)

– Including unit and some functional

– Still too little
 Static analysis

– only helps that much
 Reviews

– better

– no predictability, though

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1310

Fundamental problems with testing

 Too late

– Comes after the implementation is complete

– Cost of bug grows

– Enforces multi-tasking
 Not a silver bullet

– Next slide

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1311

(1972)

Program testing can be used to show the presence of
bugs, but never to show their absence.
[“Structured programming”, Dahl O.J., Dijkstra E.W. and Hoare C.A.R.]

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1312

Formal verification

Formal verification is the act of proving or disproving the correctness of
intended algorithms underlying a system with respect to a certain formal
specification or property, using formal methods of mathematics.

 Testing – upper bounds for program quality

– Passed tests mean nothing

– Failed tests means something is broken
 Formal verification – lower bounds for program quality

– Guarantees absence of failures of some kind

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1313

Formal verification. Applied. Take with caution.
boolean isPowerOfTwo(int a){return (a&(a-1))==0;}

(a
1
…a

k
)10....0a =

m >= 0
a > 0 => binary presentation of a has a least one 1 bit

a-1= (a
1
…a

k
)01....1 a&(a-1)=(a

1
…a

k
)00....0

m m

a&(a-1) = 0 => a
1
,...,a

k
 = 0 => a = 2m

a = 2n => m=n, a
1
,...,a

k
 = 0 => a&(a-1) = 0

∀0<a∈N :a&(a−1)=0⇔∃n∈N :a=2n

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1314

[When] you have given the proof of [a program's]
correctness, … [you] can dispense with testing
altogether.
[“Software engineering”, Naur P., Randell B.]

(1969)

Only the true formal verification is too expensive

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1315

How is that all related to type annotations?

Hold on.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1316

Annotations in Java
Before 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1317

Annotation

an-no-ta-tion: a critical or explanatory note added to a text
– the statement above is from a dictionary

– the statement above is an annotation

In Java (and other programming languages)

Information about a software program that is not a part of the
program itself

@FromDictionary

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1318

Annotations in Java. Examples

@Stateless @LocalBean public class GalleryFacade {

 @EJB private GalleryEAO galleryEAO;

 @TransactionAttribute(SUPPORTS)

 public Gallery findById(Long id) { ... }

 @TransactionAttribute(REQUIRED)

 public void create(String name) { … }

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1319

Annotations in Java

 Introduced in Java 5
 Built-in

– @Override
– @Deprecated
– @SupressWarning

 Custom
 Used extensively

– JavaEE
– Test harnesses

@

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1320

JSRs

 JSR-175: A Metadata Facility for the JavaTM Programming Language

A metadata facility for the JavaTM Programming Language would allow classes,
interfaces, fields, and methods to be marked as having particular attributes.

 JSR-250: Common Annotations for the JavaTM Platform

This JSR will develop annotations for common semantic concepts in the J2SE
and J2EE platforms that apply across a variety of individual technologies.

 JSR-269: Pluggable Annotations Processing API

Provide an API to allow the processing of JSR 175 annotations (metadata); this
will require modeling elements of the Java(TM) programming language as well
as processing-specific functionality.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1321

Before Java 8

 @A public class Test {

 @B private int a = 0;

 @C public void m(@D Object o) {

 @E int a = 1;

 ...

 }

 }

 Declarations only
– Class

– Method

– Field

– Parameter

– Variable

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1322

Before Java 8

 @Target

– ANNOTATION_TYPE, CONSTRUCTOR, FIELD,
LOCAL_VARIABLE, METHOD, PACKAGE, PARAMETER, TYPE

 @Retention

– SOURCE, CLASS, RUNTIME

 Fields, default values

– @Test(timeout=100)

– Primitive, String, Class, enum, array of the above
 No inheritance

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1323

Typical application programmer will never have to define
an annotation type, but it is not hard to do so.
[Java language guide.

http://docs.oracle.com/javase/1.5.0/docs/guide/language/]

Yet done often for a purpose of testing.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1324

Custom annotations

 Define a custom annotation type
 Apply to the code
 Use in runtime

– Reflection
 Use in compile-time

– Annotation processor

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1325

Custom annotation

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface Property {

 String value();

 boolean waitable() default false;

}

@Property(“Text”)

public String getText() {...}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1326

Custom annotation. Runtime.

 java.lang.Class
– getAnnotation(Class<A>), getAnnotations(),

getDeclaredAnnotations()

 java.lang.reflect.Method
– getAnnotation(Class<A>), getDeclaredAnnotations(),

getParameterAnnotation()

 java.lang.reflect.Field
– getAnnotation(Class<A>), getDeclaredAnnotations()

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1327

Custom annotation. Runtime.

private void addAnnotationProps(Object bean) {

 for (Method m : bean.getClass().getMethods()) {

 if (m.isAnnotationPresent(Property.class)) {

 String name = m.getAnnotation(Property.class).value();

 //put method result into a map

 }

 }

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1328

Custom annotation. Compile time.

 javax.annotation.processing.Processor

– Set<String> getSupportedAnnotationTypes()

– boolean process(Set<? extends TypeElement>,
RoundEnvironment)

 javax.annotation.processing.RoundEnvironment

– Set<? extends java.lang.model.element.Element>
getElementsAnnotatedWith(Class<A>)

 javac … -processor <annotation processor class> …

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1329

Custom annotations. Compile time.

public class PropProcessor extends AbstractProcessor {
 ...
 @Override
 public boolean process(Set<? extends TypeElement> set,
 RoundEnvironment re) {
 for (Element e :
 re.getElementsAnnotatedWith(Property.class)) {
 Property p = el.getAnnotation(Property.class);
 //generate the waiting code
 }
 }
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1330

How is that all related to verification?

Just a little bit longer.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1331

Annotations in Java 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1332

Annotations in Java 8

 Could be used on any use of a type

– more on next slides ...
 @Target

– TYPE_PARAMETER, TYPE_USE

 Repeating annotations

@

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1333

JSR 308: Annotations on Java Types

This JSR extends the Java annotation syntax to permit annotations on any
occurrence of a type. Previously, annotations could not be placed on generic type
arguments, type casts, etc.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1334

JSR 308: Annotations on Java Types (1)

 method receivers

public int size() @Readonly { ... }

 generic type arguments

Map<@NonNull String, @NonEmpty List<@Readonly Document>>
files;

 arrays

Document[][@Readonly] docs2 =

 new Document[2] [@Readonly 12];

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1335

JSR 308: Annotations on Java Types (2)

 typecasts

myString = (@NonNull String)myObject;

 type tests

boolean isNonNull = myString instanceof @NonNull String;

 object creation

new @NonEmpty @Readonly List(myNonEmptyStringSet)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1336

JSR 308: Annotations on Java Types (3)

 type parameter bounds

<T extends @A Object, U extends @C Cloneable>

 class inheritance

class UnmodifiableList implements @Readonly List<@Readonly T> { ... }

 throws clauses

void monitorTemperature() throws @Critical TemperatureException { ... }

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1337

Annotations in Java 8. More examples

class Person {

...

 void setValue(@Mutable Person this, String firstName) {

 this.firstName = firstName;

 }

...

}

@NonNull MyClass @Length(2)[] @ReadOnly[]

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1338

Still, how is that all related to verification?

Next slide.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1339

Annotations in Java 8

 Permitted on every type use
 Are analyse-able at compile time
 The whole compilation tree is available for analysis

Hence …

 A lot of verification could be done at compile time

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1340

JSR 305: Annotations for Software Defect Detection

This JSR will work to develop standard annotations (such as @NonNull) that can
be applied to Java programs to assist tools that detect software defects.

 Nullness
 Check return value
 Taint
 Concurrency
 Internationalization

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1341

Checkers framework

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1342

Checkers framework

The Checker Framework enhances Java’s type system to
make it more powerful and useful. This lets software
developers detect and prevent errors in their Java programs.

 Works now – with JDK 7
 14 checkers.
 Allows to build custom checkers

http://types.cs.washington.edu/checker-framework/

http://types.cs.washington.edu/checker-framework/

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1343

Checkers framework.

 Works for JDK 7

– substituting javac

– generating valid byte-code

– only affects compile-time
 Eclipse plugin

$ <checkers>/binary/javac -processor <a checker>
<other parameters>

$ java -jar <checkers>/binary/javac.jar -processor <a
checker> <other parameters>

@

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1344

Checkers framework.

 @TypeQualifier

 “Inheritance”

– @SubtypeOf(Class<? extends Annotation>)

 Automatic type refinement
 Default qualifiers

– @ImplicitFor(<class names or classes or types>)

– checkers.types.TreeAnnotator

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1345

Checkers framework. Type checkers.

 Nullness
 IGJ (Immutability Generics Java)
 Lock
 Property file
 Units
 Typestate

@

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1346

Nullness checker

If the Nullness checker issues no warnings for a given program,
then running that program will never throw a null pointer exception.

 @Nullable, @NonNull, @PolyNull
 @Raw, @NonRaw, @PolyRaw
 @NonNullOnEntry, @Pure, @AssertNonNullAfter,

@AssertNonNullIfTrue, @AssertNonNullIfFalse,
@AssertParametersNonNull

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1347

@Nullable Object obj;
@NonNull Object nnobj;
...
nnobj.toString();
obj.toString();
nnobj = obj;
obj = nnobj;
if (nnobj == null) ...
if (obj != null) {
 nnobj = obj; //type refinement
}

Nullness checker

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1348

IGJ checkers

 @Immutable
 @Mutable
 @ReadOnly
 @Assignable
 @AssignFields
 @I

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1349

Lock checker

If the Lock checker issues no warnings for a given program, then
the program holds the appropriate lock every time that it accesses
a variable.

 Inspired by “Java Concurrency In Practice” (?)
 @GuardedBy – only allowed to access if a particular lock is held
 @Holding – only allowed to be called if a particular lock is held

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1350

Lock checker

@GuardedBy("MyClass.myLock") Object myMethod() { ... }

@GuardedBy("MyClass.myLock") Object x = myMethod();

@GuardedBy("MyClass.myLock") Object y = x;

Object z = x;
x.toString();

synchronized(MyClass.myLock) {
 y.toString();
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1351

Lock checker

void helper1(@GuardedBy("MyClass.myLock") Object a) {
 a.toString();
 synchronized(MyClass.myLock) {
 a.toString();
 }
}

@Holding("MyClass.myLock")
void helper2(@GuardedBy("MyClass.myLock") Object b) {
 b.toString();
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1352

Lock checker.

@GuardedBy and @Holding parameter syntax.

this : the object in whose class the field is defined.
class-name.this : for inner classes.
itself : the object to which the field refers.
field-name : the (instance or static) field.
class-name.field-name : the static field.
method-name() : the object is returned by calling the named method.
class-name.class : the Class object for the specified class.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1353

Property file checker

The property file checker ensures that a property file or resource
bundle (both of which act like maps from keys to values) is only
accessed with valid keys.

 @PropertyKey

– No need to annotate the literals
 @Localized

– a localized message
 @LocalizableKey

– a key to a localizable message

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1354

Units checker

 @Area: @mm2, @m2, @inch2 ...
 @Current: @A
 @Length: @m, @mm, @inch
 @Luminance: @cd
 @Mass: @kg, @pound
 @Speed: @mPERs, @kmPERh
 @Substance: @mol
 @Temperature: @C, @K
 @Time: @s, @min, @h

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1355

Units checker

@Documented
@Retention(RetentionPolicy.RUNTIME)
@TypeQualifier
@SubtypeOf({ Time.class })
@UnitsMultiple(quantity=s.class, prefix=Prefix.nano)
@Target(ElementType.TYPE_USE,
ElementType.TYPE_PARAMETER)
public @interface ns {}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1356

Typestate checker

@State public static @interface Opened { ... }
@State public static @interface Closed { ... }
class Stream {

void open(@Closed(after=Opened.class) this);
void close(@Opened(after=Closed.class) this);
void int read(@Opened this);

}
@Opened Stream stream1 = ...; @Closed Stream stream2 = ...;
stream1.read();
stream2.read();
stream2.open(); stream2.read();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1357

Custom checkers

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1358

public class Account {

 private final @CreditCard String cardNumber;

 public Account(@CreditCard String number) {

 this.cardNumber = number;

 }

 public @CreditCard String getCardNumber() {

 return cardNumber;

 }

}

@CreditCard. Usage

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1359

@Documented

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE_USE,

 ElementType.TYPE_PARAMETER})

@TypeQualifier

@SubtypeOf(Unqualified.class)

public @interface CreditCard {}

@CreditCard. Annotation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1360

@TypeQualifiers(CreditCard.class)

@SuppressWarningsKey("credit.card")

public class CreditCardChecker extends BaseTypeChecker {

...

}

public class CreditCardAnnotator extends TreeAnnotator {

 public Void visitLiteral(LiteralTree tree,

 AnnotatedTypeMirror type) {

 ...

 }

}

@CreditCard. Checker and annotator

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1361

@SuppressWarnings("credit.card")

@CreditCard String convert(String input) {

 if(checkLuhn(input))

 return input;

 else

 throw IllegalArgumentException("...");

}

new Account("4111111111111111");

new Account("4111111111111110");

@CreditCard. Usage

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1362

 A card number in an account is always validated
 That is guaranteed at compile time
 You do not need to test with invalid numbers
 You do need to test

– All @SuppressWarnings("credit.card")
– checkLuhn(String cardNum)



@CreditCard

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1363

More real life examples.

class SafeMath {
public static double sqrt(@Positive double value)

{…}
}
@Positive p;
@Negative n;
sqrt(p);
sqrt(p – n);
sqrt(n*n);
sqrt(n);
sqrt(p + n);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1364

Is this a “formal verification”?

It is a “verification”, for sure.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1365

Conclusion

 Formal verification vs testing
 Annotations before Java 8
 Annotations in Java 8
 Checkers framework
 Custom annotations

@

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1366

Q&A

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1367

Type annotations in Java 8
и почему это хорошо
Alexandre (Shura) Iline
Java quality architect

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1368

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

