
Dynamic data race detection in

concurrent Java programs

Vitaly Trifanov

trifanov@devexperts.com

Dmitry Tsitelov
cit@devexpert.com

mailto:trifanov@devexperts.com
mailto:cit@devexpert.com

Life story

¢ƘŜ ŀǇǇ ƛǎ ŘŜǾŜƭƻǇŜŘ Χ

ǘŜǎǘŜŘ Χ

ƭƻŀŘ ǘŜǎǘŜŘ Χ

delivered

Life story

9ǾŜǊȅǘƘƛƴƎ ǿƻǊƪǎ ŦƛƴŜ ŦƻǊ ŀ ŎƻǳǇƭŜ ƻŦ ǿŜŜƪǎ Χ

ŀƴŘ ǘƘŜƴ Χ

strange exception, impossible data,

lightning from the skies

(add your favorite)

Life story

CƻǊ ǘǿƻ ǿŜŜƪǎ ŜǾŜǊȅƻƴŜ ǎŜŜƪǎ ŦƻǊ ŀ ǇǊƻōƭŜƳ Χ

ŎǳǎǘƻƳŜǊ ƛƴ ŀ ǊŀƎŜ Χ

ǘƘŜƴ ǎƻƳŜ ƘŜǊƻ Ŧƛƴŀƭƭȅ ŦƛƴŘǎ ǘƘŜ ƻŦŦŜƴŘŜǊ Χ

the missing volatile on a field

Data Race Example

Data Race Example

public class Account {

private int amount = 0;

public void deposit(int x) {amount += x;}

public int getAmount() {return amount;}

}

public class TestRace {

public static void main (String[] args) {

final Account a = new Account();

Thread t1 = depositAccountInNewThread (a, 5);

Thread t2 = depositAccountInNewThread (a, 6);

t1.join();

t2.join();

System.out.println (account.getAmount ()); // may print 5, 6, 11.

}

}

Expected Execution

Racy Execution

Data Races

ð Data race occurs when many threads access the same shared data concurrently; at least

one writes

ð Usually itΩs a bug

Data Races Are Dangerous

ð Hardto detect if occurred

ð no immediate effects

ð program continues to work

ð damage global data structures

ð Hard to find manually

ð Not reproducible- dependson threadstiming

ð Dev& QA platformsarenot somulticore

Automatic Race Detection

ð 20+ yearsof research

ð Static

ð analyzeprogramcodeoffline

ð data races prevention(extendtype system, annotations)

ð Dynamic: analyzereal programexecutions

ð On-the-fly

ð Post-mortem

Dynamic Detectors vs Static

Static Approach

ð Pros

ð DoesnΩt require program execution

ð Analyzes all code

ð Doesn t depend on program input, environment, etc.

ð Cons

ð Unsolvable in common case

ð Has to reduce depth of analysis

ð A lot of existing tools for Java

ð FindBugs, jChord, etc

Dynamic Approach

ð Pros

ð Complete information about program flow

ð Lower level of false alarms

ð Cons

ð Analyzes only current execution

ð Very large overhead

ð No existing stable dynamic detectors for Java

Static vsDynamic: What To Do?

ð Use both approaches J

ð {ǘŀǘƛŎ όCƛƴŘ.ǳƎǎκ{ƻƴŀǊΣ Ƨ/ƘƻǊŘΣ Χύ

ð Eliminate provable synchronization inconsistencies

on the early stage

ð Dynamic

ð Try existing tools, but they are unstable

ÅIBM MSDK, Thread Sanitizer for Java

ð That s why we ve developed our own!

Requirements for Perfect Detector

ð Dynamic

ð Fast

ð Precise

ð Scalable

Scalability Concept

ð Application uses libraries and frameworks via API

ð At least JRE

ð API is well documented

ð Class XXX is thread-safe

ð Class YYY is not thread-safe

ð XXX.get() is synchronized with preceding call of XXX.set()

ð Describe behavior of API and exclude library from analysis

Synchronization Contract Example

DRD: How Its Organized

What Operations to Intercept?

ð Synchronization operations

ð thread start/join/interrupt

ð synchronized

ð volatile read/write

ð java.util.concurrent

ð Accesses to shared data

ð fields

ð objects

How It Works

Instrumented app
classesApplication classes

JLS: Publishing Data

Publish changes

Receive changes

JLS: Synchronized-With Relation

ð άSynchronized-withέrelation

ð unlock monitor M m all subsequent locks on M

ð volatile write m all subsequent volatile reads

ðΧ

ð Notation: send m receive

JLS: Happens-Before & Data Races

ð X happens-before Y, when

ð X, Y - in same thread, X before Y in program order

ð X is synchronized-with Y

ð Transitivity: exists Z: hb(X, Z) && hb(Z, Y)

ð Data race: 2 conflicting accesses, not ordered by happens-before relation

Happens-Before Example

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Vector Clock

Not ordered!

A: 3 > 2

B: 3 < 4

How It Works. No Data Race Example

How It Works. Data Race Example

Code Instrumentation

ð Check everything => huge overhead

ð Race detection scope

ð Accesses to our fields

ð Foreign calls (treat them as read or write)

ð Sync scope

ð Detectsynceventsin our code

ð Describe contracts of excluded classes

ð Treat these contracts as synchronization events

Detection Scope

Our Code ñforeignòcall

ñlocalòcall

